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CONTROLLING ITEM EXPOSURE CONDITIONAL ON ABILITY
IN COMPUTERIZED ADAPTIVE TESTING

Abstract

The interest in the application of large-scale adaptive testing for

secure tests has served to focus attention on issues that arise when

theoretical advances are made operational. Many such issues have more to do

with changes in testing conditions rather than testing paradigms. One such

issue is that of insuring item and pool security in the continuous testing

environment made possible by the computerized administration of a test, as

opposed to the more periodic testing environment typically used for linear

paper-and-pencil tests. In the continuous testing environment of adaptive

testing, methods have been developed in the past to use-the computer to

control the rate at which particular items are exposed to test-takers. These

methods have typically employed randomization schemes, sometimes in reference

to a particular target distribution of test-taker ability. This paper

presents a new method of controlling the exposure rate of items conditional on

the ability level of an individual test-taker. The properties of such

conditional control on the exposure rates of items, when used in conjunction

with a particular adaptive testing algorithm, are explored through five

studies with simulated data.

Key Words: computerized adaptive testing, conditional exposure control,

exposure rates, test security.
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CONTROLLING ITEM EXPOSURE CONDITIONAL ON ABILITY
IN COMPUTERIZED ADAPTIVE TESTING

Introduction

Recent advances in psychometrics and computing technology have led to

the development of a testing paradigm that is very different from linear

paper-and-pencil testing -- computerized adaptive testing (CAT; see, for

example, Eignor, Way, Stocking & Steffen, 1993; Lord, 1977; Schaeffer, Steffen

& Golub-Smith, 1993, Stocking & Swanson, 1993; Wainer, Dorans, Flaugher, Green

& Mislevy, 1990). As interest in large-scale implementation of modern

adapttve testing has increased, particularly for high-stakes testing programs

(Jacobson, 1993), increasing attention has been focussed on issues that arise

when theoretical advances are made operational (see, for example, Mills &

Stocking, 1995).

Some of these issues stem less from changes in testing paradigms and

more from changes in testing conditions. An example of such an issue is

insuring the security of items and tests. In linear paper-and-pencil testing,

large numbers of candidates take a single form or parallel forms a test at

administration dates scheduled throughout some time period. In this context,

the frequency with which a single item is seen by a single test-taker can be

tightly controlled in advance of testing through policies that regulate both

the reuse of test forms and the frequency with which candidates may retake the

test. This system of test administration may be called periodic testing.

Adaptive tests are tests in which items are selected from a large pool

of items to be appropriate for a test-taker (the test "adapts" to the test-

taker). All but a few proposed desigas have assumed that items would be

chosen and administered to test-takers on a computer. In the context of

adaptive testing, the computer itself, and in particular the item selection
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algorithm, can be used to implement measures that control the frequency with

which an individual test-taker encounters a particular item. In this

environment, continuous, as opposed to periodic, testing becomes feasible.

It is, of course, possible to conceive of conventional paper-and-pencil

testing in a continuous testing environment, although the security problems of

such an administrative mode may be difficult to overcome for reasonable cost.

Likewise, it is also possible to conceive of CAT in a periodic testing

environment, although this would fail to capitalize on the convenience of

computer administration.

This paper addresses the issue of insuring item and item pool security

in the environment of continuous testing offered by CAT. By this we do not

mean the physical security of items and pools on computers at remote testing

sites with data transmission among them. These issues are presumably

addressed by encryption and security methodologies from the field of computer

science as well as by administrative procedures designed to control the

physical security of -omputers and computer storage devices. Rather, we

address issues related to the frequency with which particular items are

selected for inclusion in an adaptive test.

All of the published methods designed to control the frequency of item

^ 4nA4..4A._1,1

Some of them, in particular the Sympson & Hetter (1985) procedure and the

multinomial procedure (Stocking & Lewis, 1995) control the frequency with

reference to a particular target population of test-taker ability. These

methods may insure, say, that a particular item is not administered to more

than 20% of the test-takers in a target population. However, a more detailed

examination may show that this item is administered to 100% of the high
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ability test-takers, even though it is administered to no more than 20% of the

test-takers overall. In this paper we present a new method of exposure

control that attempts to rectify this problem by limiting the frequency of

administration conditional on ability level.

This is in contrast to the method outlined in Davey & Parshall (1995).

The Davey & Parshall methodology, which may also be termed 'conditional',

limits the frequency with which an item can be administered, conditional on

all other items that have already been included in an adaptive test. This

conditional approach, while intriguing, may be difficult to implement tn a

practical context. In addition, it does not directly control the too-frequent

administration of some items to test-takers at some ability levels.

In the next section we briefly provide more details about CAT and a

particular adaptive testing algorithm that we will use in the later examples.

The following sections describe the unconditional multinomial method of

exposure control of Stocking & Lewis (1995) and present its conditional

version. The final section contains an exploration of some of the properties

of conditional exposure control.

Ada tive Testin With the Wei hted Deviations Model

pointec out oy :arsnall 6.;35) .ligh-stakes acaptive tescing

has at least three goals: 1) to maximize test efficiency by selecting the

most appropriate items for a test-taker, 2) to assure that the tests measure

the same composite of multiple traits for each test-taker by controlling the

nonstatistical nature of items included in the test, and 3) to protect the

security of the item pool by controlling the rates at which items can be

administered. These &,als often compete with one another.
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Different approaches to each of these goals yield different algorithms

for adaptive testing. The particular algorithm used in this paper is the

Weighted Deviations Model (WDM) deieloped by Swanson & Stocking (1993) and

Stocking & Swanson (1993). This paradigm is chacacterized by flexible

approaches to all three goals of adaptive testirv;.

In general, any CAT algorithm implicitly orders the items in the pool in

terms of their desirability for selection as the next item. Differences in

ordering typically reflect particular definitions e item optimality and

particular methods of estimating test-taker ability. Any attempt to control

the exposure of items can then be viewed as modifications imposed on this

ordering.

In the WDM the item pool is ordered by employing a methodology from the

decision sciences that models the behavior of expert test specialists. The

WDM ordering explicitly takes into account nonstatistical item properties or

features along with the statistical properties of items. This is to insure

that each adaptive test produced from a pool matches a set of test

specifications and is therefore as parallel as possible to any other test in

terms of content and type of items, while being tailored to an individual

test-taker in terms of appropriateness. The desired balance between

-caSULIAL and ouns,ruct concerns y L:ne 4eights given to them,

which are chosen by the test designer. The WDM approach also allows

specification of overlapping items that may not be administered in the same

adaptive test. In addition, it is possible to restrict item selection to

blocks of items, either because they are associated with a common stimulus or

common directions or any other feature that test specialists deem important.

Thus at each item selection in the WDM, the pool or an appropriate subset of

9
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the pool is ordered from most desirable (smallest weighted deviations from

desirable test properties) to least desirable (largest weighted deviations

from desirable test properties).

In summary, in the WDM, the next item selected for administration is the

item that simultaneously

1) is the most appropriate possible at a test-taker's estimated ability

level, while

2) contributing as much as possible to the satisfaction of all other

constraints.

At the same time, it is required that the item

3) does not appear in an overlap group containing an item already

administered, and

4) is in the current block (if the previous item was in a block), starts

a new block, or is in no block.

In the particular version of the WDM used in this paper, the measure of

the appropriateness of the item is the Fisher item information function (Lord,

1980, equation 5-9) and the estimate of ability is maximum likelihood (Lord,

1980, equation 4-31), although other measures of the statistical properties of

items (see for example, Chang, 1995) and other estimates of ability (see for

example, Davey & Parsnail, 1995) are possible.

Controlling Item Exposure With the Unconditional Multinomial Method

The multinomial method of Stocking & Lewis (1995) can be viewed as

having two distinct, although simultaneous, 'phases. In the 'adjustment'

phase, exposure control parameters are developed for each item, using the

methodology of Sympson & Hetter (1985). We call this the adjustment phase in
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that we are adjusting the exposure control parameters after each iterative

simulation. During the adjustment phase, as well as after it, the exposure

control parameters for each item are used in a 'selection' phase to over-ride

the optimal selection of the next item employing the multinomial method.

These two phases are detailed in this section.

The Adjustment Phase

In ihe adjustment phase, the Sympson & Hetter procedure considers a

test-taker randomly sap& from a typical group of test-takers and

distinguishes between the probability P(S) that an item is selected as the

best next item by some item selection algorithm, and P(A1S), the probability

that an item is administered, given that it has been selected. The procedure

seeks to control the overall probability that an item is administered, P(A),

where P(A) P(A1S) * P(S), and to insure that the maximum value over all

P(A)s is less than some specified maximum value r.

The 'exposure control parameters', P(A1S), one for each item, are

determined through a series of adjustment simulations using an already

established adaptive test design and simulated examinees (simulees) drawn from

a typical distribution of ability. Following each simulation, the proportion

of times each item is selected as the best item, P(S), and the proportion of

timec Patch item ic Admini,qtered. p(A), are ceparatelv tallied. Tf P(S) is

less than or equal to the desired maximum, then P(A1S) is set to one for the

next iteration, insuring that P(A) P(A1S)*P(S) r. If P(S) is greater than

r, then P(A1S) is set to r/P(s) for the next iteration, again insuring that

P(A) 5 r. The iterative adjustment simulations continue until the P(AIS) have

stabilized and the maximum observed P(A) for all items is approximately equal

to the desired value of r.
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The Selection Phase

When selecting the next item in each iterative adjustment simulation

(and with the iinal exposure control parameters once they have been

established), the simplest version of multinomial item selection phase

proceeds as follows (see Stocking & Lewis, 1995, for more complex extensions):

a) Form a list of elements ordered by their desirability. We use

'elements' here to indicate that the list may be a mixture

of discrete items and stimuli for sets of items. Any method

of ordering by desirability is, of course, possible,

although in this paper we use the WDM described previously.

b) For each element i in the list, form the operant

probabilities ki, where

(3.-P.)),P1 .
J.1

Pi is Pi(AIS), the exposure control parameter for item i.

ki is the joint probability that all items before item

are rejected given selection and item i is administered

given it is selected.

c) If necessary, adjust the operant probabilities so that they

sum to one by dividing them by their unadjusted sum.

d) Form the cumulative distribution.

e) Generate a random number uniformly distributed between zerc

and one. Find the corresponding element in the cumulative

distribution.

f) Remove all elements proceeding the one selected from further
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consideration in this adaptive test.

g) If the element selected is a stimulus for a set of items,

repeat steps a) through e) for items belonging to this set.

The Conditional Multinomial Method

The unconditional multinomial method described above results in an

exposure control parameter, Pi(A1S), for each element i in a pool. The

adjustment phase develt,ps these Pi in reference to a particular distribution

of ability 8 in a relevant population of test-takers.

An approach to developing a conditional version of the multinomial

method is to consider the range of 8 covered by the distribution of ability,

and divide this range into, say, M different discrete values of 8 that cover

the range of interest. Consider one particular discrete value in this range,

Om. We can perform iterative adjustment simulations to.develop exposure

control parameters for each element i in the pool using the multinomial

procedure and in reference to only those simulees drawn that have true ability

equal to 8.. (There can be, of course, as many simulees as desired whose true

ability is 9,.)

These iterative adjustment simulations result in a vector of exposure

control parameters appropriate for all the elements in the pool for

individuals with ability Om If the adjustment simulations are performed

simultaneously for all values of 8m, m - 1, . . M, we produce a matrix of

conditional exposure control parameters with elements Pi(AIS,8.) for the ith

row (one for each element in the pool) and the mth column (one for each of the

O. that span the range of true abilities in the target population of

interest),

13
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During the adjustment phase, when the conditional exposure control

parameters are being developed, the tallies of item selection and

administration are kept separately by 9 level. For the item selection

phase, the simulee's estimated ability level, i, is used to select the

appropriate column in the matrix of conditional exposure control parameters to

use in the selection of the next item.

The advantage of conditional multinomial exposure control is that it

allows direct control of item exposure for different levels of ability.

Moreover, desirable maximum exposure rates, rm, can be chosen to be different

values for different ability levels, perhaps reflecting the availability of

items in the pool. In addition, the conditional parameters are now

independent of any target population of test-takers.

However, the conditional multinomial exposure control method retains the

disadvantages of unconditional multinomial exposure control, as well as the

Sympson & Metter adjustment procedure. That is, the conditional exposure

control parameters are dependent upon the specific item pool and test

structure used in the iterative adjustment simulations. Moreover, the

conditional control of exposure makes the adjustment process of developing the

exposure control parameters even more time-consuming and tedious than when

exposure control is unconditional, although there is some practical evidence

that this need not be so (see question 4 in the next section).

Explorations of Conditional Multinomial Exposure Control

In this section we explore a series of'questions concerning the

properties of conditional exposure control using the multinomial method. All

of the explorations depend upon simulation studies, not data from real test-
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takers. Furthermore, all of the explorations used a single pool and adaptive

test Oesign.

The Item Pool

Available to the authors was a large pool of items and sets of items

measuring various aspects of quantitative reasoning. There were a total of

516 elements in the pool -- 494 items and 22 stimuli. Of the 494 items, 153

were associated with the 22 stimuli and the remaining 341 items were discrete

items. The items were calibrated on large samples (2000+) of test-takers from

the paper-and-pencil testing program using the 3-parameter logistic item

response model and the computer program LOGIST (Wingersky, 1983). They were

placed on a common IRT metric using the transiZormation methods of Stocking and

Lord (1983). The mean item discrimination was .82 with a standard deviation

of .34; the mean item difficulty was .03 with a standard deviation of 1.23;

and the mean pseudo-guessing parameter was .14 with a standard deviation of

.11.

The Adaptive Tests

Items were drawn from this pool using the WDM to form (fixed length)

adaptive tests of 28 items, subject to 27 constraints on their content. The

constraints had relative weights that varied from 11, indicating that it was

very important for an adanrive ect ro have itemq And/or cttnu1i with these

features, to 1, indicating that it was less important for an adaptive test to

have these features. The importance of measurement appropriate for a test-

taker was reflected in the weighting of the item information function at 10.

In addition to this test structure, item selection was further

restricted by the specification of 83 overlap groups. Items and stimuli

belonging to an overlap group may not appear in the same adaptive test with

15
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other items and stimuli appearing in the same overlap group. When a stimulus

appears in an overlap group, all items associated with that stimulus are

included by implication. There were a total of 326 entries in the 83 overlap

groups.

The adaptive test was designed to be as parallel as possible to an

existing 60-item linear test of quantitative reasoning, both in terms of the

construct measured and measurement properties. To facilitate comparisons, the

adaptive test score was the estimated number-correct true score on the metric

-

of the linear test, rather than 0, which would be a more natural test score

when working in an Item Response Theory (IRT) framework.

The Simulations

The adaptive test simulations were conducted with uniform distributions

of simulated examinees (simulees) across (nearly) equally spaced values on the

score reporting metric, starting from about the chance score level and ending

close to the top of the range. This results in values on the 8 metric that

are unequally spaced. In addition, to facilitate unconditional comparisons, a

particular target population was established. The target population was

estimated for these same (nearly) equally spaced values on the score reporting

metric, using the method of Mislevy (1984) and a sample of over 6000 real

Question 1: Do the adjustment iterations converge for conditional exposure

control parameters?

Answer: Yes, but not to the targeted conditional values.

The iterative adjustment simulations were first performed with the

unconditional multinomial method of exposure control using a target maximum
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probability of administration of .2. Ten adjustment simulations were

conducted, each of which used 100 simulees at each of 11 values spaced along

the score reporting metric, for a total of N 1100 simulees per iteration.

(Sympson & Hetter recommend the use of at least 1000 simulees.)

The results of the iterative adjustment simulations are shown in Figure

la. Four curves are plotted in this figure: the largest observed probability

of administration for each adjustment simulation for discrete items, stimuli,

items in sets, and the target maximum probability of .2. The maximum observed

probabilities for the unconditional procedure converge smoothly to values

slightly above the target value of .2. It is likely that fewer iterations

would have been satisfactory, since there is little difference between the

results of, say, the fifth iteration and the tenth iteration. At iteration

10, the adaptive test reliability for the target population, computed from the

conditional standard errors using the estimate suggested by Green, Bock,

Humphreys, Linn & Reckase (1984, equation 6), was .93. In this final

adjustment iteration, 14 out of 22 stimuli were used from the pool as well as

263 out of the 494 items.

This series of adjustment simulations was then repeated using the

conditional multinomial method of exposure control. The same nulzber of

simulees at cne same aoid.ity leveis was used ana tne target conditional

maximum observed probabilities of administration were specified as .2. All

other aspects of the unconditional adjustment simulations were left unchanged.

The results of the conditional exposure control adjustment simulations are

shown in an unconditional fashion in Figure lb. Even though the unconditional

probability of administration was not controlled in these iterations, the same

smooth convergence to values around .2 is seen in Figure lb as in Figure la.

17
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At iteration 10, the adaptive test reliability for the target population is

.92 in contrast to .93 for unconditional exposure control. In addition to

decreasing test reliability slightly, conditional exposure control also

increases pool utilization -- 19 stimuli and 403 items were used in contrast

to 14 stimuli and 263 items when exposure control was unconditional.

The satisfactory measurement of the intended construct for both series

of adjustthent simulations is indicated by the average weighted deviation shown

in Figure lc for each adjustment simulation. To compute the average weighted

deviation for an adjustment simulation, information concerning the extent of

violations in each adaptive test for each nonstatistical constraint on item

selection was weighted by the relative weight assigned to that constraint and

then avw.aged over the 1100 simulees to give an estimate.of the average

weighted deviation for the target population. The price for conditionally

controlling exposure rates is seen in the increase in the average weighted

deviation, which reaches about .08 per simulee in contrast to .06 per simulee

when using unconditional exposure control. This decrease in desirable test

properties is due to the fact that for some ability levels the pool is less

satisfactory than for other ability levels.

These sets of iteration adjustment simulations indicate that conditional

exposure control may sliehtly increase the deviations from desirable test

properties, slightly decrease test reliability, and increase pool usage. The

increase in deviations and decrease in reliability were not unexpected and

their magnitude for this pool and test structure were judged tolerably small.

The increase in pool usage is a positive consequence of conditional exposure

control in that it is implied by the obtained reduction in item exposure.

Overall, conditional exposure control appears to give satisfactory
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results. However, these results must also be analyzed in a conditional

fashion. Figure 2a displays the conditional results, for the discrete items

in the pool, in a manner comparable to Figures la and lb. In Figure 2a, the

behavior of the observed maximum for each adjustment simulation is plotted

separately for each of the 11 true score levels. Also plotted is the target

of .2 used for each true score level. Similar to looking at the results

unconditionally in Figure lb, the conditional procedure appears to be

converging relatively

around .3 rather than

Figure 2b shows

smoothly. However, it seems to be converging to a value

the target of .2.

a different method of examining the conditional results.

In this figure, the horizontal axis represents the 11 true score levels at

which the procedure attempted to control the maximum probability of

administration. The vertical axis is the maximum observed probability of

administration for each iterative adjustment simulation at each true score

level. The thinner lines plotted are the results of each conditional

adjustment simulation. The thick line is the result of controlling item

exposure unconditionally, as in Figure la.

After the fourth iteration, conditional exposure control produces

conditional observed maximum probabilities of administration that are smaller

:.nan :hose obtained when :he exposure control is unconditional, particularly

at extreme (high or low) true score levels. The conditional maximum observed

probability of administration for these extreme levels does not approach that

for middle true score levels until iteration eight. The last three iterations

(8, 9, and 10) produce similar values of conditional maximum observed

probabilities of administration, indicating again that the conditional

procedure is converging. However, these last three iterations again indicate
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that the conditional procedure is converging to a value greater than the

target value.

Question 2: Why does the conditional procedure converge to unexpected values?

Answer: Distributions of maxima of sets of numbers can produce unexpected

results.

One-possible explanation for these unexpected results is the use of

small sample sizes at each ability level in the above experiment -- 100

simulees. It is plausible to speculate that these relatively small

conditional sample sizes lead to large sampling variability. Indeed, Figures

2a and 2b show that the conditional procedure converges less smoothly than the

unconditional procedure (with 1100 simulees) shown in Figure la. However, it

is unlikely that sampling variability as we usually think of it could

simultaneously fail to cause severe interference with convergence while also

causing the procedure to approach incorrect values.

It is possible that perhaps there is something unique about the

structure of this item pool, these test specifications, and the target

observed maximum probabilities of administration of .2 that interact to make

it possible to meet such a target of .2 when controlling exposure

unconditionally, but not conditionally. To test this hypothesis the

conditional iterative adjustment simulations were repeated with conditional

targets of .1 and .3 for all true score levels. These adjustment simulations

converged conditionally to slightly above .2 and .4, respectively. No

explanation could be generated concerning the structure of the problem that

would explain consistent convergence to values about .1 higher than target

values.

BEST COPY AVAILABLE
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Neither sampling variability as we usually think of it nor problem

structure yielded satisfactory explanations. The likely answer, then, lies in

the properties of what is being estimated, namely the maximum of a set of

numbers. To better understand the distribution of a maximum of a set of

numbers, repeated simulations with different random number seeds using already

established exposure control parameters were considered. (For simplicity, we

assumed that these are unconditional, although this is not central to the

argument.) These repeated simulations are called 'evaluation trials' to

distinguish them from adjustment iterations.

For an evaluation trial, each element i has a true probability of

administration 71-,, and we obtain P1(A), the proportion of times element is

administered. We wish to explore how the observed maximum compares with the

true maximum, that is, how the maximum F(A) compares with the maximum wi. To

aid in this exploration, assume that the Pi(A) are mutually independent random

variables with normal distributions having means ffi and variances of

twi.*(1-ni)/N), where N is the total number of simulees (replications) in one

evaluation trial.

In reality, the Pi(A)s are not independent of each other, although the

amount of dependence in a set of exposure control parameters should be small

if tne acaptive zest iengtn Is very much smaller than the pool size, as it is

here. Moreover, the Pi(A)s are not normally distributed, but rather

binomially distributed. However, these simplifying assumptions are made to

provide a context in which results can actually be computed.

With these assumptions, the distribution of the maximum, that is, the

probability that the maximum observed Pi(A) is less than some arbitrary value,

Z (0 5 Z 5 1), is

#.0
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a
-P.robtmax(Pi (A) ) s2) .n Prob(Pi(A) Z) Z ni

( ). (1)

In this equation, n is the number of elements in the pool, N is the number

of simulees tn an evaluation trial, and cl) is the cumulative normal

distribution function.

To actually compute and plot this distribution requires the ri. To

approximate these reasonably well, 10 evaluation trials were performed using

the exposure control parameters from the fifth iteration of the unconditional

adjustment iterations shown in Figure la and the results averaged over the 10

evaluation trials. Since each evaluation trial involved.1100 simulees, this

is equivalent to averaging over 11,000 simulees. The theoretical approximate

cumulative distributions of the observed maximum Pi(A), gtven in equation (1),

are plotted in Figure 3 for different values of N.

The maximum of the approximate i was .2386. As sample size is

increased, the 50th percentile of the distribution of the observed maximum

moves closer to the true maximum. Selected percentiles of the four

distributions are given in Table 1.

Table 1: Percentiles of the Distributions of Observed Maximum Values

Percentiles N-110 N-1100 N-11,000 N-.110,000

25th .2923 .2430 .2367 .2377

50th .3031 .2477 .2390 .2386

75th .3157 .2532 .2415 .2395

99th .3564 .2702 .2481 .2416
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If the trus maximum is around .24, a sample size of 11,000 is necessary

to insure that the percentiles between the 25th and the 75th of the

distribution of the observed maximum correspond to values that are accurate to

two decimal places. The use of a sample size of 110 gives a 50th percentile

of around .30, and an interquartile interval of approximately .29 to .32. In

the iterative adjustment simulations for the conditional procedure the sample

size at each level of ability is only 100. This suggests that the convergence

of the conditional procedure to values of around .3 when targets are .2 may be

improved by increasing the conditional sample sizes.

Question 3: Does increasing the sample size for each ability level in the

iterative adjustment simulations rectify the situation?

Answer: Yes.

The iterative adjustment simulations for both the. unconditional (Figure

la) and conditional (Figures 2a and 2b) methods were repeated with 1000

simulees at each of the 11 ability levels. The results for the conditional

procedure are shown in Figures 4a, 4b, and 4c. Figure 4a, when compared to

Figure 2a, shows less variability in the conditional maximum observed exposure

rate from iteration to iteration. More importantly, the iterations converge

co values slightly above .2, as did the unconditional iterations (not shown

here). At the tenth iteration, this adaptive test had an estimated

reliability of .91, in contrast to .92 for the smaller sample conditional

simulations. Using larger conditional sample sizes also increased pool

utilization slightly -- 20 stimuli and 418 items were used, in contrast to 19

stimuli and 403 items with the smaller conditional sample sizes.

Figure 4b displays these large conditional sample size results
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comparable to the smaller conditional sample size results in Figure 2b. In

this figure, the thick line is the result of the large sample unconditional

iterations. Again the larger conditional sample sizes result in smoother

convergence of the procedure to values closer to the target maxima.

Figure 4c displays the average weighted deviation for the small

conditional sample size adjustment simulations (solid line, repeated from

Figure 16-) and the large conditional sample size iterations (dotted line).

The average weighted deviation remains similar across the adjustment

simulations for the two conditional experiments.

For both the small and large sample size conditional iterative

adjustment simulations, it seems clear that at least eight iterations are

needed. This is in contrast to the unconditional results shown in Figure la,

where five iteraLions seemed sufficient. Thus the procedure to develop the

conditional control of exposure rates in adaptive testing seems to require not

only larger (conditional) sample sizes than for unconditional contrul, but

also more iterative adjustment simulations.

Question 4: Given that larger (conditional) sample sizes and more adjustment

simulations are required, is there anything that we can do to shorten the

process of obtaining conditional exposure control parameters?

Answer: Yes.

In their original description of the adjustment simulations to develop

exposure control parameters for a target population, Sympson & Hetter

recommended that initial values of all P(A1S) be set to 1.0. This

recommendation is made, at least in part, because in the selection procedure

used by Sympson & Hetter, there must be at least n items in the pool with
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exposure control parameters of 1.0 to guarantee the administration of an n-

item adaptive test. Since it cannot be known in advance which n exposure

control parameters are best set to 1.0, Sympson & Hetter recommended that the

iterative adjustment simulations be started with all of them set to 1.0, and

adjusted from this starting value as outlined previously.

With the multinomial method of exposure control, this requirement

disappeari. Using this method, the administration of an n item test is

guaranteed by step e) above, in which the sum of the operant probabilities is

adjusted to 1.0 if necessary. Therefore 5t makes sense to explore the use of

different starting values for the adjustment simulations.

The conditional exposure control adjustment simulations with conditional

sample sizes of 1000 were repeated, with starting values for all Pi(AIS,O) set

to .2. The results for the conditional maximum probabilities of

administration for six iterations are shown in Figures 5a and 5b, which can be

compared to Figures 4a and 4b. The differences are striking; starting values

close to target values are obviously effective in reducing the number of

iterations required.

Careful examination of Figures Sa and 5b shows that the conditional

maximum observed probabilities of administration were low for the first

iteration and are slightly higher for subsequent iterations. This indicates

that a single iteration is not enough to be confident that the procedure has

converged. However, this examination indicates that the procedure probably

has converged by the third simulation, that is, after two adjustments to the

starting values. For the third simulation, the test reliability was .91, all

22 stimuli were used, as were 434 items, compared to test reliability of .91,

20 stimuli, and 418 items used after 10 iterations with starring values of 1.0



www.manaraa.com

23

for the conditional exposure control parameters.

Figure 5c displays the average weighted deviation for the (large sample)

conditional exposure adjustment iterations when the starting value for the

exposure control parameters was 1.0 (solid line, partially repeated from

Figure 4c) and when it was .2 (dotted line). The average weighted deviation

for the first iteration when starting values are .2 is so large that it cannot
^

be plotted on the same scale as the values for the other iterations (over

.50). This is because values of .2 for all conditional exposure control

parameters at all abilities are not appropriate for this item pool or test

structure. However, after the second iteration, the values for the average

weighted deviation become similar to those obtained with starting values of

1.0.

Figures 6a, 6b, and 6c are scatterplots of the conditional exposure

control parameters used in the third iteration (after two adjustments) when

starting values are all .2 (vertical axis) and those used in the eighth

iteration (after seven adjustments) when starting values are all 1.0

(horizontal axis), for three different true score levels. Not shown on these

plots are the points that have conditional exposure control parameters equal

to 1.0 in both conditions. Out of 516 such possibilities, there are 368 for

te lowest: zr.ae LOLe levl, :45 foi middle ,.;:ue t:;ufe level, and 373 ;or

the highest true score level. In.the Sympson & Hetter design, conditional

exposure control parameters of 1.0 occur when P(S) is less than or equal to

the target r. More elements for the extreme (low and high) true scores have

conditional exposure control parameters of 1.0 for both conditions than for

the middle true score level, indicating that more elements are selected

infrequently for these extreme true score levels. This accords with the

8 BEST COPY AVAILABLE
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nature of the item pool in that there are more items appropriate for

administration to middle ability simulees than for simulees with extreme true

score levels.

The lowesc value for a conditional exposure control parameter is .2.

This value is assigned to elements that are so desirable that they are always

selected (P(S) - 1.0), in order to insure that their overall probability of

administr-ation, P(A), does not exceed the target maximum of .2. The line on

each figure is the 45-degree line. It is not surprising to find that starting

from .2 produces lower exposure control parameters than starting from 1.0.

The procedures are approaching optimum values from below and from above.

A challenge, then, is to discover some comparison between the two sets

of results that leads to a clear choice between the two different starting

values. The eighth iteration with starting values of 1.0 had an average

weighted deviation of .076 and a test reliability estimated to be .91. The

third iteration with starting values of .2 had an average weighted deviation

of .075, and test reliability also estimated to be .91, with comparable use of

the item pool, and the adjustment iterations took less than 1/3 the time it

took for starting values of 1.0. Since there does not appear to be any basis

to reject starting close to the desired maximum conditional exposure rates, on

the basis of time alone it seems profitable to do so.

Question 5: How does conditional ex osure control compare at different

lunconditi_jil_y_talleterexosurab'itlevelswitle control in terms

of statistical properties and conformance to the test plan?

wer: Extreme (high and low) ability levels show more effects than middleAns

ability levels.
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We have noted that conditional exposure control decreases overall test

reliability slightly and increases the overall lack of conformance with

desirable test properties slightly. Thus far, we have made conditional

comparisons only in terms of the exposure rates of items. In this section, we

examine both measurement and nonstatistical properties conditional on ability

and compare the results to the more familiar unconditional Sympson & Hetter

-

exposure control procedure.

Figure 7a makes these comparisons for the conditional standard errors of

measurement (CSEM). In this figure,

ability is displayed as a bar graph, with values to be read from the right-

hand vertical axis. Two comparison curves are plotted as solid lines -- the

CSEM curve for the 60-item conventional test to which the adaptive test is

designed to be parallel, scored as number correct (the upper solid curve) and

as estimated number correct true score (the lower solid curve). Changing the

scoring of the conventional test decreases the conditional standard error of

measurement.

The dotted line in Figure 7a is the CSEM curve at the end of eight

unconditional Sympson & Hetter adjustment simulations with the target maximum

exposure rate of .2, and 100 simulees at each ability level. The dashed line

the estimated distribution of true

rcrur ,--7. .....V.

iterations with starting and target maximum exposure rates of .2 at all levels

of ability and 1000 simulees at each ability level. This latter curve is

smoother than the Sympson & Hetter curve because of the larger conditional

sample size.

For the lowest and highest three levels of ability, which represent

about 13% and 15%, respectively, of a typical population, the conditional
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standard error of measurement for conditional exposure control is typically

about 30% higher than that for the Sympson & Hetter unconditional exposure

control; at no point is it greater than about 43%. For the middle ftve levels

of ability, which represent about 72% of a typical population, the CSEM for

conditional exposure control is typically about 4% higher than that for the

Sympson & Hetter unconditional exposure control; at no point is it greater

than about 13%. Thus the greatest measurement penalty due to conditional

exposure control is at the extremes of the ability distribution, where the

CSEM is typically small to begin with. For the middle 72% of the ability

distribution, the penalty is substantially smaller, but generally positive.

This differential effect on different ability levels is due to the fact that

the item pool contains more items appropriate for middle ability levels. The

CSEM for the conditional exposure control condition could be reduced if it

were economically feasible to obtain a larger pool with more items

statistically appropriate at each ability level, particularly the extreme

(high and low) ability levels.

Figure 7b displays the lack of conformance with desirable test

properties for the Sympson & Hetter unconditional and multinomial conditional

exposure control conditions in terms of the conditional weighted deviations

summed across all 28 constraints and averaged across the simulees at a

particular ability level. As before, the estimated distribution of true

ability is plotted as a bar graph with proportional frequencies to be read

from the right-hand vertical axis.

There were no constrain violations in either condition for constraints

that received high relative weights. All corr3traint violations occurred for

13 constraints that had the lowest relative weight of 1. At all ability
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levels except the top 15% of a typical population, there is some penalty to be

paid for conditional exposure control in terms of the average weighted

deviation. This penalty is largest for the lowest ability levels. Again, if

it were economically feasible to obtain a pool containing more items that

reflect desirable test properties at all ability levels, the penalty seen in

the conditional exposure control condition could be made to disappear.

Discussion

The interest in the application of large-scale adaptive testing for

secure tests has served to focus attention on issues that arise when

theoretical advances are made operational. One such issue is that of insuring

item and pool security. This paper has concentrated on addressing such

concerns through the control of the frequency with which items in a pool are

administered.

Previous research concentrated on addressing exposure control either in

a random fashion, or with respect to items already administered, or with

respect to an overall target distribution of ability. None of these

approaches directly controls the exposure of items to test-takers with the

same or similar abilities; which can be quite high even though the overall

exposure rate is low. In this paper, we demonstrated how a particular method

of controlling item exposure, the multinomial method of Stocking & Lewis

(1995), can be extended to control item exposure conditional on ability.

The examples demonstrate a number of salient features of this method of

exposure control conditional on ability:

I) The conditional sample sizes used in the development of conditional

exposure control parameters must be large, preferably 1000 or larger.
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2) For the adaptive test studied here, the control of item exposure

conditional on ability (holding pool size and test length fixed) decreases

estimated test reliability slightly, increases the lack of conformance with

desirable test properties slightly, and increases pool utilization

substantially. The i..ctual size of observed effects for any other pool should

depend upon the structure of the pool and test specifications at all ability

levels af which conditional control is sought.

3) The control of item exposure conditional on ability increases both

the CSEM and the lack of conformance to desirable test properties differently

at different levels of ability. Generally the deterioration is largest at

extreme (high and low) levels of ability and smaller for middle levels of

ability. Again, the actual size of observed effects for any other pool should

depend upon the conformance of pool and test structure.

4) Substantial time savings can accrue in the iterative adjustment

simulations required to establish conditional exposure control parameters by

using starting values close to or equal to the desired maximum conditional

values of the probability of exposure for each item at each ability level.

Much remains to be done before this method of exposure control

conditional on ability can be universally recommended. First, this method

needs to be extensively applied to other pools with different structures and

test specifications. In particular, studies should be done with other pools

that confirm the utility of different starting values. Second, experience

with actual item exposure rates obtained from real, as opposed to simulated,

adaptive testing on many different pools is strongly desirable.

In addition, it should be noted that although exposure rate is

controlled conditional on ability level, it is not controlled with respect to

31



www.manaraa.com

29

candidate volume. An item with an exposure rate of .1 at the highest ability

level will only be seen by approximately 10% of the most able test-takers, but

if there are a million highly able test-takers, the absolute exposure could be

quite high. Any exposure control methodology that seeks to control exposure

rates as opposed to absolute exposure suffers from this criticism, including

that of Davey & Parshall. This suggests that future research might profitably

begin to focus on the effects of absolute exposure for expected candidate

volumes. The development of pool rotation schedules and partial or complete

pool replacement methods are crucial to this effort. In addition, it seems

important that the consequences for test scores of administering items about

which test-takers may have some pre-knowledge must be thoroughly understood

before continuous adaptive testing can be seen as a secure alternative to

paper-and-pencil testing.
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Figure 1: Unconditional and conditional results of adjustment iterations for r .2 and

N 1100. (Conditional results are shown unconditionally, see text.)



www.manaraa.com

-

Conditional Multinomial Exposure, Discrete Items
r .2, N - 1100

1

8 0.9

I
0.3

0.7

t OA
.t

1

0.5 -

0.4

1
;

0.3

1 2 3587 89 10
lusatke

( a )

0.9

0.8

-0.7

-0.8

-0.5

0.4

0.3

02

-0.1

0

Lelend

10

- - xl 15

xi 20
- x1 25

zi 30

35

xi 40

eg

-- xi 50

xi- 55

-- xl 59
---- Target

Conditional Multinomial Exposure, Discrete Items
r...2,Nu. 1100

-. 401011

1
0.9 \\ ....

/ .7 .

/
.. ' J .

0.8

0.7 I!" pa.

N..--

N.
N....,/ .. .. /.. .

... .
4. .

1

11

. ... .i...: ./.
1 0.8 %.

. -
. le, .. 1cir ., . ...

'. 1 11 II. . .i 0.5 '' ..-*14. 1.0 :
%. \. . I.

. .... ':--._ ., 1110.: .........
it 0.4 . ...... ----

......- N.

1,

1 0.3
....: r:-.....,,.......:___S--. , .,..k., _. 00'''.z...L..,.::_.,,,,..-t.. g....-......

- ....

1 OAi
5

0
10 15 20 25 30 35 40 45 50 55 59

True Secee

(b )

144tOd

hernial 1

Demi= 2

Derain 3

Itetatica 4

Itenulon 5

Irecatica 6

Deation 7

- Tttrei.St 9

laminae 10

ttlItUncoadidaud

Target

Figure 2: Conditional results of adjustment iterations for r - .2,

N - 1100.

3 6



www.manaraa.com

Distribution of the Observed Maximum
An Example

1

;: i,..
';is 0.9 ; i

7 0.8 ; 1

.1 0.7
;: 1

0 z 1

§ 0.8
z 1

Z I

0.5

1

Legend

N 110

N is 1100

N 11000

N 110000

.30 .35
Maximum Observed P(A)

True Maximum

Figure 3: The cumulattve distribution function for the observed
maximum when the true maximum is .2386, foz different
sample sizes.



www.manaraa.com

C
onditional

M
u

binom
ial

E
xposure,

D
iscrete

Item
sr .2,

N . 11,000I O
A

0.8
0.7i

O
A

0.5
O

A1
0.3/ 02

0.1
0

2 3 4 5 $

bends

(a)

0.9
0.1

0.7
O

s
0.15

0.4
0.3

02
0.1

0

7 ft 9 10

Lased

-31.20
- xi -25

zi

-zi.40

C
ond.

.,onal

M
ultinom

ial

E
xposure,

D
iscrete

R
entsr .2,

N 11.000

Lod1
0.9

03
0,7

0.6
0.5

0.4
0.3

02
0.1

0
L

_ - 4.. I w
in

iti liy/

...S
c

/ \

. a ..../

N
..

/ ir, :''.
'

741

''' g ..

.

T
.

../ g : .

R
.
.

/
7

a a F .......

i

.. . - .... .

.1 r. -...

i..\ , II ,
,

..

---..,..

'''.

/

...0*'-.....

, ,-

-,....--....-.'

.......4.77:-..-

10

15 20 26 30 35

40 45 N
O

61 el

T
ram

S
cow

C
onditional

M
ultinom

ial

E
xposure

C
ontrol

r-

.2

0.04 1

-
0.06

-
0.07

-
0.06

-
0.06

4 5 6 7 8 9 10

0.04

M
ention

(c)

(b)

--bradaw
l

-

beiw
a

2

-

Isseisa

3

- bode

4

-
-
k
m
a
k
m
5

---

books

6

brads

7

- -

lbradaw

-

lam
as

16

11111117acraldned

-

T
arget

Figure

4:

C
onditional

results

of adjustm
ent

iterations

for r - .2,

N 11,000.



www.manaraa.com

Conditional

0.9 -

OA

0.7

0.4

0.6

0.4

0.3

0.2

0.1

0

Multinomial Exposure, Discrete
Initisl values .2, r N 11,030

Items

- 1

0.9

0.11

0.7

0.11

0.4

0.4

0.3

- 0.2

-0.1

UvW- 10

- - 3d 1.3

xi 20

- - 25

- - -- xi . 90

- xi 4d

- - SO

- SS

- - - 59

---- Tart

Conditional

1

0.9

0.11

0.7

0.4

0.4

02

0.1

0

Multinomial Exposure, Discrete it=
Initial valets .2, r 2, N 11,000

E&PASIattatIMP=.22Ma4

Lqprl

- Medea 1
- - Inairi 2

- brim 3
luria 4

- beside 5
larlda

9atera944apenwoomasr... gar4-.

1 2 3
linados

6 10 15 20 26 30 36 40 46 150 SO

Ter 3owe

(a) (b)

. .

Conditional Multmonual Exposure Control
I r N 11,000

0.M

0.04

0.04

- 0.07

Laved
0.06

- 1ak W1 elks 1.0

- bred edam 02
0.03

0.04
1 2

lcarsdan

(c)

4 5

Figure 5: Conditional results of adjustment iterations with starting
values of exposure control parameters equal to .2, r - .2,
N - 11,000.

39



www.manaraa.com

Conditional Multinomial Exposure, xi .. 10
1

N ND 11,000
0

11 N Is 11,000
a ci0

I
O a
a

0 0 8 i
a a 5O o aa 1a

0. 0

a 0 0
a ca

0 0

.

Conditional Multinomial Exposure, xi 35

0.9

18

0.7

0.8

15

14

0.3

0.2

0.1

0

a 0
a

OA 02 03 14 15 15 0.7 OA 0.9

P(AiS), becatica (7 adjommeom from PWS) 1.0)

(a)

1

0.9

0.8 -

0.7 0 B ,

0.9

0.8

0.7

0.8

0.5

OA

0.3

02

0.1

0

1
a

° 00 di
0

0

a
alo ao

so ao

0.1 02 0.3 0.4 0.5 0.8 0.7 0.8 0.9

P(A/S), itamtion 1 (7 acliommemis Erma P(A/S) 1.0)

(b)

Conditional Multinomial Exposure, xi 59

N...11,000

0.8

0.5

0.4
0

0.3

0.2

0.1

0
o 0.1 0:2 0.3 0.4 0.5 0.8 0.7 0.8 0.9

P(A/s), Iteradoo 8 (7 adjummaraa from P(A/S) 1.0)

O 0
a 0

0 0

(c)

000

Figure 6: Scatterplots of conditional exposure control parameters after two
adjustments from starting values of .2 (vertical axis) vs. seven
adjustments from starting values of 1.0, for - 10 (a), 35 (b), and 59
(c).



www.manaraa.com

Conditional Standard Errors

10 15 20 25 30 35 40 45 50 55 50
T. Scare

(a)

Conditional Weighted Deviations

at 0.4
re

§ 0.3

02

OA

0
111 11
41 41 41 *Pt 1111

tO 15 20 25 30 35 40 45 50 55

(b)

0.3

Loral

III g(thaad

i Cawantiark ar
Canisrlaad. al

j- Gad Mokisooall

o.

- 0.3

- 0.2

0.1

0

Lagead

al Waft)
dad Mukisomal

SY461404111466r

Figure 7: Conditional comparisons- of CSEHs (a) and conformance to test
properties (b) for unconditional Sympson/Hetter and
conditional multinomial exposure control (see text).

41


